

Anallerg®-NAD

INCI: Nicotinamide adenine dinucleotide

Anallerg[®]-MN Background introduction of NAD⁺

NAD Tryptophan Nicotinic acid NAM -(TRP) (NA NA Cytoplasm Mitochondrion NRK TRP ----- NAMN NMN -Nucleus Malate/aspartate (NMNAT2 NAMPT shuttle ART Glycolysi TCA cycle PARP1 NADH - FADH NADH NAM SIRT12 ?NMNAT3 NMNAT1 Lactate Pyruvate NADK SIRT3,4,5 Glyceraldehyde-NMN 3-phosphate SIRT1,2,5,6,7) PARP1 shuttle NADP NMN ?NAMPT NAM NAMPT NADPH Eric Verdin. (2015). Special Section 350 (6265) : 1208-1213.

- Various intracellular NAD⁺ precursors, including tryptophan, niacin, nicotinamide, nicotinamide riboside (NR), and β -nicotinamide mononucleotide (NMN), undergo extracellular metabolism mediated by enzymes like CD38 and CD73.
- NAD+ is essential for energy generation, transferring reducing equivalents either through glycolysis or in the form of NADH from the tricarboxylic acid cycle.
- The pivotal role of NAD⁺ in mitochondrial intermediary metabolism suggests that changes in mitochondrial NAD⁺ levels may impact metabolic efficiency, aging, and age-related diseases.
 - NAD⁺ serves as a precursor to NADPH, essential for the synthesis of various lipids, including ceramide, and acts as a reducing agent for cellular antioxidants.

Anallerg®-MN

 $O = \dot{P}$

O = P - O

NAD⁺

(oxidized)

-0

Background introduction of NAD+

OH P

In NADP⁺ this hydroxyl group is esterified with phosphate.

OH

CH

NAD+ is the oxidized form of NAD, which converts into NADP, helping the cell's metabolism and energy conversion function.

Anallerg®-MN Background introduction of NAD⁺

Hallmarks of aging	Pathways and conditions affected by changes in NAD ⁺ levels	Refs	Hallmarks of aging	Pathways and conditions affected by changes in NAD ⁺ levels	Refs	
Genomic instability	↑ NAD ⁺ levels lead to ↑ DNA repair capacity; ↓ NAD ⁺ leads to ↑ ROS accumulation Mutations in DNA repair genes associated with premature aging disorders (e.g., XPA and CS), lead	[11,14,38,55]	Mitochondrial dysfunction	Mouse and worm models of XPA, CS, and A-T show impaired mitophagy and mitochondrial biogenesis, likely due to \downarrow activity of NAD ⁺ -SIRT1-PGC-1 α axis. These defects can be restored by \uparrow NAD ⁺ with NAD ⁺ precursors	ogenesis, [14,40,49,50,84] with	
	to 1 NAD ⁺ , PARP1 hyperactivation, neurodegeneration, and mitochondrial dysfunction SIRT1 interacts with DNA repair enzymes Ku70, PARP1, and WRN. PARP1 is involved in both BER and NER: SIRT3 enhances NHEJ and HR via interaction with PARP1			 NAD* in aged mice restores mitochondrial function to that of young mice in a Sirt1-dependent manner either via PGC-1α/β or AMPK NAD* leads to 1 TFAM signaling, likely via HIF-1α stabilization, resulting in 1 mitochondrial biogenesis and loss of mitochondrial homeostasis. Short-term treatment with NMN ↑ NAD* and restored mitochondrial homeostasis in mice via Sirt1-PGC-1α activation 		
	Data not available					
		[8,9,44,49,59]	Deregulated nutrient sensing	NAD ⁺ levels affected in DIO. NR treatment can help to prevent high-fat DIO by ↑ NAD ⁺ and stimulating SIRT1 activity	[9,40,49,50,84]	
Stem cell exhaustion	Treatment with NAD ⁺ precursors NR and NMN activates SIRTs, which deacetylate and activate transcription factors, including PGC-1α, FOXOs, and others, all related to aging			NNMT deficiency protects against DIO by ↑ SAM and NAD ⁺ in adipose and liver. Beneficial effects of calorie restriction are lost when SIRT1 and SIRT3 are inhibited		
	PARP1 may be involved in chromatin structure modulation and insulation promotion, associated with changes in gene expression. Also, PARP-1 may function as a transcriptional co-factor. PARP-2 transcriptionally reputates SIRP11 indirectly connection NBD ⁺ layels to enclorent atterations.			NMN treatment of a diabetes mouse model ameliorated glucose intolerance and † hepatic insulin sensitivity or secretion by restoring NAD ⁺ levels (likely due to † SIRT1 activity)		
	NR treatment rejuvenated muscle, neuronal, and melanocyte SC pools through induction of UPR ^{mt} and synthesis of prohibitin proteins; leads to † oxidative respiration and/or ATP levels and higher mitochondrial membrane potential			NR/NMN treatment of mice fed a HFD [↑] use of lipids as substrates, [↑] energy expenditure, and improved insulin sensitivity		
			Altered cellular communication	NR treatment prevented noise-induced hearing loss and led to regeneration of neurite ganglia mediated by NAD⁺-dependent SIRT3 activity. ↑ NAD⁺ directed SIRT1 activity delays axon degeneration	[25,40,50,72]	
	NR treatment prevented senescence of muscle SC in mouse model of muscular dystrophy			NMN treatment reversed age-related changes in expression of genes related to inflammation, partly by		
	SIRT1 maintains naïve state of pluripotent SC by deacetylating Oct4. Restoration of NAD ⁺ in aged somatic cells (overexpression of NNT or NMNAT3) enhanced reprogramming efficiency			increasing SIRT1 activity. Parp1 KO mice, CD38 KO mice, and NNMT KO mice exhibit † NAD ⁺ levels and SIRT1 activation, correlating with ↓ risk of high-fat DIO		
			Cellular senescence	NAD ⁺ concentrations 1 during senescence	[8,45,47]	
Loss of profeostasis	NAD precursor NH, or PAHPI inhibitors, activate UPH", causing translocation of POXD transcription factors, triggering 1 antioxidant defenses in mice and worms, prolonging lifespan and health. UPR ^{mt} activation also observed in yeast	[26,38,39,44,59]		NAD ⁺ levels ⊥ in aged human tissues, resulting in changes in oxidative stress and cellular metabolism, suggesting link between NAD ⁺ metabolism and senescence		
	NR treatment of an AD mouse model (Tg2576) \uparrow NAD ⁺ levels and PGC-1 α -mediated degradation of Bace1 leading to \downarrow A β production. AD mice crossed with CD38 KO mice showed attenuated AD pathology, suggesting that \uparrow NAD ⁺ leads to \downarrow aggregated dysfunctional proteins, such as A β			pathology, suggesting that \uparrow NAD* leads to \downarrow aggregated dysfunctional proteins, such as AB		
Hallmarks of aging	Pathways and conditions affected by changes in NAD ⁺ levels Refs					
	NR t senescence in both neuronal and melanocyte SC by improving mitochondrial function, dependent on SIRT1 function		NADU		<i>.</i> .	
	↑ NAD ⁺ (overexpression of NNT and NMNAT3) delays senescence in mesenchymal SC		NAD ⁺ plays a vital role in repairing DNA, reducing oxi			
comprised autophagy	Exogenous NAD ⁺ administration † autophagy in retinal pigment epithelium [105]					
	↑ NAD ⁺ synthesis, caused by AMPK activation through SIRT1/mTOR activation,	stress, restoring mitochondrial function, and maintaining				
			telomere les	ngth, closely linking it to the aging process.		

Abbreviations: BER, base excision repair; DIO, diet-induced obesity; KO, knockout; mt, mitochondrial; ROS, reactive oxygen species; SAM, S-adenosyl methionine; SC, stem cell; UPR, unfolded protein response; † increase; ‡ decrease.

Sultani G, et al. Epithelial-mesenchymal tr[J]. Cancer & metabolism, 2016, 4(1): 1-13.

In middle age, intracellular NAD⁺ levels drop to half ,potentially contributing to age-related aging and diseases

NAD+ significantly reduced skin damage induced by UVC

Anallerg[®]-NAD Anti-Photodamage

> UV Damage Protection

NAD+ markedly decreased the increase in green AF intensity from UVC-induced skin damage

NAD+ significantly reduced UVC-induced skin sDNA damage

NAD+ significantly reduced UVC-induced skin sDNA damage

NAD+ notably mitigated the decrease in the Bcl-2/Bax ratio caused by UVC, reducing skin cell apoptosis

NAD+ significantly lessened the decline in mitochondrial superoxide dismutase (SOD2) and catalase (CAT) levels induced by UVC

NAD+ effectively inhibited the increase in inducible cyclooxygenase (COX2) levels caused by UVC in the skin

Anallerg[®]-NAD Efficacy Summary

- Maintains normal energy metabolism and mitochondrial function in skin, preserving elasticity and radiance while preventing skin laxity and wrinkles
- Helps skin cells resist damage from UV rays and other environmental stressors, preventing premature aging.
- Acts as a key coenzyme for Sirtuins (longevity proteins), assisting skin cells in maintaining normal growth and differentiation to prevent skin issues.
- Participates in the activity of PARP (poly(ADP-ribose) polymerase), aiding in the repair of skin cell damage.

Anallerg®-NAD

- INCI: Nicotinamide Adenine Dinucleotide
- Appearance: White to off-white powder
- Purity: >98%
- Recommended Usage: 0.1% 5.0%

Application: Recommended to be added at low temperatures below 40°C;

suitable for creams, lotions, serums, etc.

• Storage Recommendations: Store in a cool, dark place; keep sealed at 2-8°C

